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Introduction
The objective of this project is to experiment with multiple data imputation (MICE) and compare
the results of a linear model fit to the data. The data set contains medical insurance cost of
2772 observations of patients aged between 18 and 64 years. It contains various factors influencing
medical insurance charges and aims to enhance forecasting medical expenses for policyholders.
Categorical variables are sex (51% male and 49% female), smoker status (20% smoker) and the
region (southwest, southeast, northwest, northeast - nearly evenly stratified). Continuous variables
are charges and bmi (Body Mass Index), discrete variables are age and the number of children. The
variable of interest is medical insurance charges. The original data set is complete and contains no
missing values. In order to experiment with the MICE algorithm, the data will be intentionally
modified to contain missing values by randomly deleting observations across each variable.

The Model
A linear regression with three factor variables (sex, smoker and region) is fit to the data:

Yi,j,k,l = µ + γj + θk + τl + α * xi,1 + β * xi,2 + δ * xi,3 + ϵi,j,k,l where

Yi,j,k,l is the log of the insurance charge of observation i for i = 1, 2, . . . , 2772 within gender group
j, smoker group k, region group l.

µ is the expected overall mean for a non-smoker female patient from the region northeast.

γj : mean effect of sex γj = 0 for female j = 0 and γ1 = 1 for male patients, j = 0, 1.

θk: mean effect of smoke θk = 0 for non-smokers k = 0 and θ1 = 1 for smoker patients, k = 0, 1.

τl: mean effect of region τl = 0 for patients from the region northeast, otherwise τl for l = 1, 2, 3
where τ1 represents northwest, τ2 southeast and τ3 southwest respectively.

α: mean effect of age in years.

β: mean effect of bmi.

δ: mean effect of number of children.

with the assumption that the error term ϵi,j,k,l ~ Normal(0, σ2) normally distributed with common
variance σ2 of fitted values.
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Exploratory Data Analysis (EDA)
There is a relatively strong covariance between charges and bmi, as well as charges and age.
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Figure 1: Charges tend to linearly increase as BMI index surges. This trend is observed in terms
of age as well. However, three distinct price categories can be determined which are determined by
other factors than age, such as smoker status or the number of children.

Further to that the visual inspection of the data suggests that smoker status will play an important
role in determining insurance charges. On the other hand, the exploratory analysis showed that
patients with no children tend to pay higher medical insurance cost, and sex or region play a rather
insignificant role. Therefore from a modeling perspective it might be sensible to remove sex and
region from the model, but we will keep these variables for now and focus on imputation. To
prevent µ being negative value, the log of insurance charges was fitted in the regression model.

To carry out statistical analysis with missing data, the missingness pattern was analyzed, since
MICE assumes and performs best when data is missing at random. Missing values were introduced
by hand and completely at random. Therefore the EDA focuses on visualizing the pattern of
missing data points across variables, rather than the mechanism of missingness (MCAR, MAR,
NMAR).

Table 1: Missingness probability across variables tend to de-
fined benchmark of 5%.

age sex bmi children smoker region charges
0.05 0.043 0.054 0.043 0.046 0.049 0.057
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Figure 2: Jittered points represent individual observations. Most patients have no children, and
their rate tend to be the highest. However, largest median charge is displayed by patients having
three children. Smoking is definitely significant for determining insurance costs. NA values got
well spread by and are representativ of the distribution in terms of smoker status.

Missing values got distributed relatively well spread across charges and other continuous variables,
as well as within smokers and non-smokers. Exploring these distributions is reassuring since some
explanatory variables (smoker, bmi, age) strongly correlate with the dependent variable. Further
visual analysis confirmed no major patterns in the data and it can be concluded that missingness
of observations is completely at random (MCAR), as expected.

Method
Imputation was carried out with the MICE algorithm at m = 5 imputed sets first, and in case of
unsuitable convergence, the number of imputed sets got increased to 10 in total. For factor variables
the method “polyreg” (Polynomial Regression) is being set. For continuous variables the method
“norm” (Gaussian imputation) and “rf” (imputation with Random Forest model) was tested.

Three test sets got defined with the following proportion of missing data:

• proportion of missingness at 5% (benchmark set)
• proportion of missingness at 20%
• proportion of missigness at 40%

Imputed values will be analyzed on each of the three test sets to compare the performance of the two
methods (normal vs rf). The quality of imputation was monitored by visualizing the imputation
chains for each of the three sets. Finally, the main focus of the analysis was given to fitting the
regression model and comparing parameter estimates and standard errors between:

• the full data set
• the modified data set (at 5% missingness) versus complete data (NA’s omitted)
• the modified data set versus multiple imputation with “random forest”rf” and “polyreg”

method on the benchmark set (5% missingness).
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Convergence of the MICE algorithm
As diagnostic plots trace lines of the MICE algorithm were produced for convergence evaluation on
each of the three test sets (5%, 20%, 40%).
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Figure 3: MICE trace plots of the benchmark set (5%) imputed with random forest and polyreg
combination. Each colored chain represent an imputed set and there is no particular pattern in the
traces. They converge properly and 10 iterations seem sensible.

In terms of the number of iterations 10 proved to be sensible in each case of the test sets. The
trace plot lines represent imputed values across the iterations. Each chain is a single iteration and
only the final value gets taken over to the imputed data set.

Results
The analysis has shown that the combined “normal” & “polyreg” versus “rf” & “polyreg”method
of MICE performs similar on the data in terms of model output.

Table 2: Param. est. with imputation normal vs random
forest.

µ α γ1 β δ θ1 τ1 τ2 τ3

norm 7.066 0.033 -0.087 0.015 0.098 1.557 -0.053 -0.173 -0.124
rf 7.149 0.032 -0.077 0.013 0.102 1.521 -0.059 -0.172 -0.127

Table 3: St. errors with imputation normal vs random forest.

µ α γ1 β δ θ1 τ1 τ2 τ3

norm 0.056 0.001 0.022 0.002 0.008 0.025 0.030 0.030 0.032
rf 0.067 0.001 0.021 0.002 0.009 0.034 0.029 0.032 0.028
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However, it is still important to consider unrealistic imputations the MICE algorithm with normal
method produced on missing data. The analysis showed that the normal imputation method does
not differentiate between discrete and continuous values, and by taking the Gaussian mean and
standard deviation of observed values unrealistic data (such as 2.25 number of children) can be
generated. As a result fitting a model to such imputed values can lead to distorted parameter
estimates and likely artificially lower standard error values.
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Figure 4: BMI values with the two imputation methods. The blue dots are observed values, red
dots the imputed ones.

As a consequence, it is more sensible to chose the “random forest” method, as it fits the model to
realistic imputed variables.

In terms of the main analysis there is no difference in parameter estimates between the modified
benchmark data (5% probability of missingess) and the completed set (na.omit()). The parameters
of the model fitted to the imputed data are somewhat different to the model fitted to the full set,
but the values are relatively close to each other.

Figure 5: Scaled parameter estimates, and their respective 95% Confidence Intervals.
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The 95% confidence intervals were calculated with the quantile function of a t-distribution with 2771
degrees of freedom qt(0.975, 2771), which could be very well approximated by a normal distribution
since n is large enough. All intervals of parameter estimates overlap, however the interval of the
intercept and smoker variable are somewhat different for the full and imputed sets. This might be a
borderline significance, the imputed set might underestimate the importance of smoker and slightly
overestimate the intercept. However overall it can be concluded that the difference is estimate
for the rest of the parameters is not significant. The model fitted to the full data provides least
uncertainty about the parameter estimates, followed by the imputed model, where standard errors
are somewhat higher. Regarding the modified and completed sets standard errors are identical,
just like for parameter estimates.

Table 4: Comparison of st. errors between the four sets

µ α γ1 β δ θ1 τ1 τ2 τ3

full 0.051 0.001 0.017 0.001 0.007 0.021 0.025 0.025 0.025
modified 0.061 0.001 0.021 0.002 0.008 0.026 0.030 0.030 0.030
completed0.061 0.001 0.021 0.002 0.008 0.026 0.030 0.030 0.030
imp. rf 0.067 0.001 0.021 0.002 0.009 0.034 0.029 0.032 0.028

Conclusion
The MICE algorithm is a powerful tool to help conduct statistical analysis on missing data as it
takes into account the relationship between variables when imputing values. This analysis explored
that choosing the right imputation method is key to ensure a statistical model is fitted to realistic
data values and generate sensible prediction estimates for accurate forecasts. If the chosen MICE
imputation method is unfit to the data at hand, imputed values might be unrealistic, regardless
of the proportion of missing values in the original set. This can lead to less reliable prediction
accuracy of a model.

There will likely be little or no difference is terms of model output when the proportion of missing
data is low (e.g. 5%), if MICE imputation is done properly. Diagnostic plots are useful tools to
track the quality of imputed values. For data with significant proportion of missingness (40%)
MICE is still capable of producing high quality imputations. When properly used, it is a reliable
tool generating realistic, observed-like data for any set that has missing observations.
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